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A regular pattern of surface waves is observed on a liquid curtain falling from a horizontal, wetted tube,
maintained between two vertical wires. Since the upper boundary is not constrained in the transverse direction,
the top of the curtain enters a pendulumlike motion, when the flow rate is progressively reduced, coupled to the
propagation of curtain undulations, structured as a checkerboard. This structure is formed by two patterns of
propagating waves. In some sense, these propagating patterns replace the stationary pattern of liquid columns
observed at a lower flow rate. Measurements of phase velocity, frequency, and wavelength are reported. The
data are in agreement with a simple dimensional argument suggesting that the wave velocity is proportional to
the surface tension divided by the mass flux of liquid per unit length. This scaling is also that followed by the
fluid velocity at the so-called transonic point, i.e., the point where the fluid velocity equals that of sinuous
waves. We finally discuss the implications of these results for the global stability of liquid curtains.
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I. INTRODUCTION

Many studies have been devoted to the appearance and
dynamics of organized structures in nonlinear dissipative
spatially extended systems �1�, especially in one space di-
mension �2�. These patterns have been observed in various
physical systems such as, among others, hydro-thermal
waves �3,4�, Taylor-Dean instability �5�, directional solidifi-
cation �6�, directional viscous fingering �7,8�, and so on.
They are important for the understanding of morphogenesis
in general, and also in the context of transition to turbulence
in hydrodynamics �9–11�. Roughly, one can distinguish two
classes of phenomena. In the first class, the primary pattern is
stationary, but dynamics can develop from secondary bifur-
cations linked to specific symmetry breaking �12�. In the
second class, the primary pattern is propagative and drifts at
a well-defined phase speed, the phenomenology of the dy-
namics being often well captured by complex Ginzburg-
Landau equations �13�.

Among the diverse investigated systems, one has recently
received a special interest because of its simplicity and of the
possibility to force at will initial conditions: when a liquid is
falling continuously from a horizontal ceiling, regular lat-
tices of liquid columns hanging below the ceiling are ob-
served �14,15�, and exhibit striking collective dynamics �16�.
The dynamics of this pattern have motivated several studies
in three different geometries: �i� liquid columns formed be-
low a horizontal wetted tube �16,17�, �ii� liquid columns
formed below the perimeter of a overflowing dish �18–21�,
and �iii� two-dimensional �2D� lattices formed below a po-
rous grid �22,23�. In each case, the pattern belongs to the first
class, i.e., to the group of stationary primary patterns, and
one may ask whether there could exist an equivalent of the
second class of pattern for this kind of flow. In the present

paper, we show that this equivalent indeed exists, but in a
higher-flow-rate regime. When the liquid columns are re-
placed by a continuous liquid curtain extending over the
whole ceiling, and in a specific range of flow rate, this cur-
tain exhibits a pattern of sinuous waves, coupled with modu-
lations of the film hanging below the ceiling, both perturba-
tions propagating along the ceiling at constant speed.

The pattern of sinuous waves is reproduced in Fig. 1, the
curtain being formed in the present paper below a uniformly
wetted tube continuously supplied with liquid �16,17�. The
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FIG. 1. �a� Checkerboard structure resulting from two sets of
propagating waves on a liquid curtain. �b� Definition of the hori-
zontal wave velocity VH and wavelength �H.
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lateral sides of the curtain are maintained vertical with two
wires put under tension. Surprisingly, both sets of waves pre-
serve their shape while propagating, i.e., they travel from one
side to another at a speed independent of the vertical position
z. This is remarkable, because such curtains are highly
stretched by the acceleration of gravity, and thus both the
fluid velocity and curtain thickness strongly vary with z,
evolving, respectively, as U2�2gz and h=� /U�z−1/2. As a
result, it could be expected that the velocity of the waves
propagating along the curtain depends also on z. Let us recall
that according to the available literature �24–31�, two kinds
of waves can propagate on a curtain: a symmetrical mode
�varicose waves� corresponding to thickness modulations,
and an antisymmetrical mode �sinuous mode� corresponding
to modulations of the median transverse position of the cur-
tain �24�. In the asymptotic conditions of a weak amplitude
�linear approximation� and in the limit of an inviscid ambient
gas, these waves have the following velocities:

cvar =��h

2�
k , �1�

csin =�2�

�h
, �2�

which indeed depend on z through the curtain thickness h�z�.
Another surprise in this experiment is that these large-

amplitude undulations extend on the whole curtain, including
a large upstream domain �also denoted the “subsonic” do-
main in the following�, in which the Weber number We is
smaller than 1. Let us recall that We=�hU2 /2� is built upon
surface tension �, liquid density �, local liquid velocity U,
and local curtain thickness h. According to the available lit-
erature, it is predicted that the very existence of the domain
We�1 could lead to curtain rupture provided that the size of
this upstream domain becomes large enough �30–32�. In-
deed, in this case, sinuous waves are able to travel upstream
against the flow, in the upstream domain �We�1 implies
that U�z��csin�. It is, however, worth mentioning that curtain
stability criteria built upon wave amplification have been re-
cently contested �33�, and the present experiment is perhaps
an observation in favor of this new point of view.

In this paper, we present an investigation of this pattern,
and provide in particular measurements of its frequency,
wavelength, and phase velocity, varying flow rate, liquid
properties, and tube radius. We also suggest tentative scaling
laws for these quantities, starting from simple dimensional
and physical arguments. In particular, we suggest that the
phase velocity could be proportional to the velocity of the
fluid at the so-called transonic line of the curtain, i.e., at the
horizontal line where the liquid velocity is exactly equal to
that of sinuous waves. This line is also the location where
We=1, i.e., the separation line between the convective zone
�downstream� and the absolute zone �upstream� for sinuous
surface waves. Let us mention here that observations of
spontaneous waves on a falling sheet, although possibly in-
volving different mechanisms, have been reported very re-
cently in other geometries, such as a liquid curtain falling
across a flat horizontal grid �34� or attached below an over-

flowing circular dish �35�. This shows the great generality of
this surprising pattern that should deserve in the future more
extensive studies. A brief account of some of our early ob-
servations is available in Ref. �36�.

The paper is organized as follows. In Sec. II, the experi-
mental setup is described and typical scalings governing the
flow are recalled. Section III presents our observations and
data, as well as attempted scaling laws based on dimensional
analysis, before the final discussion in Sec. IV.

II. EXPERIMENTAL CONDITIONS

A. Experimental setup

The experiment is suggested in Fig. 2. The liquid is ex-
tracted from a reservoir �1� � by a gear pump ISMATEC
BVP-Z �2� � that imposes a constant flow rate Q. The flow rate
is measured with a float flowmeter �4� �. A half-filled chamber
�3� � damps remaining perturbations. The liquid is injected at
the two ends of a horizontal hollow tube �5� � �diameter d
equal to 3.4 and 6.8 cm�, and flows on its external surface
from a long thin slot �thickness e=2 mm� drilled on its upper
side. If the flow rate is sufficiently high, a liquid curtain is
observed �6� �. Its width �w=25.5 cm� is kept constant along
the vertical direction by two thin nylon threads �diameter
0.01 cm� put under tension by two weights attached at their
lower ends. These two vertical wires pin the edges of the
curtain and thus they prevent the shrinkage caused by surface
tension that would occur otherwise. The height of the curtain
can be chosen from 15 to 25 cm, by tuning the vertical po-
sition of an intermediate tank. All the experiments are per-
formed with silicon oils �polydimethylsiloxane �PDMS��, of
viscosity ranging from 10 to 50 cP. Their physical properties
are listed in Table I. The surface tension and density are

FIG. 2. Sketch of the experiment. The curtain, guided between
two long vertical threads, falls from a horizontal uniformly wetted
hollow tube. The liquid is supplied through a long thin slot drilled
all along the tube and turned upward. On the right part of the figure,
the flow structure viewed from position A is suggested. The picture
reproduced in Fig. 5�a� is taken from position B.

TABLE I. Physical properties of liquids.

Liquid reference � �mm2/s� � �dyn/cm� � �g/cm3�

PDMS 47V10 10.3 20.1 0.935

PDMS47V30 32.0 20.4 0.947

PDMS47V50 53.6 20.7 0.957
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close for the three oils. In the following, the three liquids will
be simply referred to as V10, V30, or V50. We have checked
that the liquid lies at room temperature, which was between
20 and 22 °C during the experiments. Special care was taken
to protect the system from any sources of perturbations, es-
pecially air stream from the atmosphere around the experi-
ment.

Curtain undulations are followed by a high-speed video
camera �FASTCAM 1024 Motion-Corder�. In practice, a fre-
quency of 250 images per second is sufficient to capture the
phenomena under study. Because of the required short acqui-
sition time, it is important to use a powerful and nonpulsed
light source. Furthermore, the light diffused by the curtain
has to be as homogeneous as possible. The chosen solution,
depicted in Fig. 3, uses a 300 W incandescent lamp which
lights a white screen, the latter diffusing a homogeneous
light on the curtain. Another screen, black colored, is put
behind the curtain, to maximize contrast. A circular hole is
drilled through the white screen, in which the camera lens
fits. The reflection of this hole induces a parasite round black
shadow on the pictures, of very limited extent, which does
not hinder quantitative measurements. The lateral edges are
the nylon wires mentioned above.

In contrast with previous experiments on liquid curtains
�25,26,28,31�, our geometry allows lateral motions of the top
of the curtain. Most of previous work involved curtains fall-
ing directly from a slot or from a sharp edge, which con-
strains the detachment line position. It is presumably why the
checkerboard structure has never been reported in the avail-
able literature up to now, to our knowledge.

B. Description of the flow: Some helpful scalings

In this section, we discuss in more detail the flow struc-
ture involved in the curtain, and provide the readers with
scalings that will help them to understand the measured data.
The key control parameter of the experiment is the flow rate
per unit length �, which is simply equal to the volumetric
flow rate Q divided by the width of the curtain w. Typical
values for � range between 0.1 and 2 cm2/s.

In most studies on curtains, it is assumed and checked
�26,29,37� that the flow structure is at first order a plug flow,
i.e., that U is constant along the y direction providing that
one measures sufficiently far from the slot, or more generally
from the detachment point �typically more than a few milli-
meters away�. The case of a curtain detaching directly from a
slot �placed at z=0 in what follows� is perhaps the most well
known. In his pioneering study, Brown �25� established a

semiempirical law for the vertical velocity in the curtain,
which is approximately given by U2=U0

2+2g�z
−2�4��2/3 /g1/3� where U0 denotes the mean velocity of the
flow across the slot, � the kinematic viscosity, and g the
acceleration of gravity. Our situation is not too different from
that involved for a millimetric slot: U0 does not exceed
10 mm/s, and the term U0

2 should become negligible for z
larger than U0

2 / �2g��0.05 mm. Also, the offset on z given
by the viscous corrective term is of order 0.3 mm, and
should also become negligible downstream of this offset.
Then, far enough from the bottom of the tube, the velocity
field should simply reduce to a free-fall law:

U2 = 2gz . �3�

This assumption was checked by the method already de-
scribed in �26,29,40�, i.e., by measuring the opening angle of
sinuous wakes left behind a needle touching the curtain. By
analogy with the supersonic Mach cone, half the angle
formed by the wake at its summit, �, is related to the velocity
of the flow U and csin by the relationship

sin � =
csin

U
. �4�

The velocity csin is given by Eq. �2�, which gives

csin =�2�

�h
=�2�U

��
. �5�

Thus, one obtains

sin � = � 2�

��
	1/2

U−1/2. �6�

In practice, a good agreement between Eq. �3� and mea-
surements was obtained by taking the origin z=0 at the bot-
tom of the cylinder �Fig. 1�a��, for any flow rate � we tested
�from 1.2 to 2.2 cm2/s�. A typical example is given in Fig. 4:
by measuring � �Fig. 4�a��, we plot the quantity ��2 sin4 ��−1

�equal to �g�2 /2�2�z according to Eqs. �3� and �6�� versus z,
the vertical position of the wet obstacle. The prefactor
g�2 /2�2 equals 1.05 for our parameters, which is in agree-
ment with the data. Thus Eq. �3� can be considered as valid
in the range of parameters of the study. This velocity profile
suggests that the initial momentum at the top of the curtain is
small compared to the momentum supplied to the liquid by
gravity forces. It also implies that the local properties of the
curtain �the thickness, the speed of surface waves, and so on�
are very dependent on z: the curtain is clearly a nonparallel
flow.

Furthermore, what is mentioned above has implications
for the location of the singular point We=1 on the curtain.
The length of the subsonic area, which equals the vertical
position z* where We=1, is tuned by �. It obeys the follow-
ing relationship:

We =
���2gz*�1/2

2�
= 1, �7�

which leads to

FIG. 3. �Color online� Principle of the visualization.
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z* =
2�

g�2�2 . �8�

The Weber number increases as z increases downstream
and it is smaller than 1 when z�z*. This property enables a
useful method for locating the transonic line: this is the lo-
cation where the sinuous wake below an obstacle vanishes
when moving the obstacle upstream �28�. Note that, as any
change on � modifies the liquid thickness in the whole cur-
tain without modifing the velocity field, an increase of �
leads to increase everywhere in the Weber number.

III. THE CHECKERBOARD WAVE PATTERN

A. General qualitative features

Experiments are developed as follows. First, a curtain is
obtained by setting � at a very high value �typically
5 cm2/s�. The lateral nylon wires are then put in contact with
the curtain lateral boundaries, which get pinned on them. The
wires are then relaxed toward the vertical direction. After-
ward the flow rate is progressively decreased until the two

sets of waves appear. The subsequent checkerboard structure
covers the whole curtain, including the downstream area
where We	1 �Fig. 1�a��. We have observed that the wave
velocity, measured horizontally and denoted VH �defined in
Fig. 1�b�� is nearly independent of z. The two sets of waves
propagate toward opposite directions and do not seem to
interact. Instead, they cross each other and get superimposed.
Furthermore, neither waves seems to “see” the curtain edges
and in particular they are not reflected on them. Therefore,
although a uniform wavelength is seemingly selected on the
whole pattern, it is not selected by the width of the curtain:
The wavelength does not need to be a subdivision of this
width.

As suggested by the right part of Fig. 2, this pattern ap-
pears in coincidence with a pendulumlike motion of the top
of the curtain along its transverse direction, coupled with the
transient appearance of “bulges” on the film flowing below
the cylinder. Presumably, these bulges are formed by the
Rayleigh-Taylor instability �17� and sustain the curtain oscil-
lations by successive appearance and merging with the cur-
tain. This mechanism is reminiscent of that sometimes in-
voked to explain oscillations of the network of liquid
columns replacing the curtain at low flow rate �18�, and sup-
ports the idea that in some sense the sets of propagating
waves can be viewed as a drifting equivalent of the station-
ary pattern of liquid columns.

The pendulum motion of the curtain has been evidenced
by views of the cylinder taken from below �direction B sug-
gested in Fig. 2�, a typical example being available in Fig.
5�a�. The detachment position y0 varies along the x axis,
which leads to a sinuous “snake” structure on top of the
curtain, when the two sets of spatially periodic and propaga-
tive waves are created. This observation is also a sign of the
sinuous nature of the involved waves.

B. Measurements of checkerboard properties: Phase velocity

Measurements are achieved in the following way. Gray
levels are extracted along a horizontal line recorded at a dis-
tance between 1 and 2 cm below the tube, from images of
the curtain such as that shown in Fig. 1�a�. By recording
these gray levels at successive time steps, one obtains a spa-
tiotemporal diagram from which VH, f , and � can be ex-
tracted �Fig. 5�b��. The wave velocity VH=
X /
t, frequency
f =1/T, and wavelength �H are directly obtained from these
diagrams. Measurements extracted from different vertical lo-
cations z=const on the curtain did not show any variations of
those quantities, and the chosen location was just the one that
provided the best contrast.

Measurements of VH versus flow rate per unit length � are
plotted in Fig. 6�a�, for three viscosity values and for two
different tube diameters. It turns out that at first order � �ki-
nematic viscosity� and d �tube diameter� do not influence the
velocity of the waves, although they play a role in the range
of existence of the pattern �see later in the text�. A sharp
increase of the speed is noticeable when � is decreased be-
low 0.8 cm2/s. The quantity � / ���� is plotted in Fig. 6�a�
�dotted line�, and it turns out that this quantity fits very well
the measured values of VH.

FIG. 4. �a� A typical sinuous wake formed by a needle soaked in
the curtain. �b� Check of the free-fall law with no offset at the origin
U2=2gz �continuous line� for several flow-rate values �silicon oil
V50, cylinder diameter d=4.7 cm�.
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The choice for this velocity can be justified with a simple
physical argument using dimensional analysis. Basically the
curtain undulations are traveling under the combined actions
of two velocities, the fluid velocity U= �2gz�1/2 and that of
sinuous waves that reads csin=�2� /�h=�2�U /��. As VH
does not depend on z, it should be a combination of these
two velocities that would be independent of z. The sole suit-
able combination reads therefore

csin
2

U
=

2�

��
� VH �

�

��
. �9�

It is also worthwhile to notice that VH�� / ���� is half the
speed of the sinuous waves at the transonic line �i.e., the line
where We=1�. This suggests that this line could play an
essential role in the selection of the pattern velocity. It is,
however, important to note that despite this selection, the
pattern does not exhibit any discontinuity at the transonic
line and looks similar in both subsonic and supersonic zones
�see Fig. 1�. Furthermore, even though the flow is highly
nonparallel, the wave crests are only slightly curved and the
pattern does not vary a lot along z. This is a bit surprising: U
scales as �z1/2, h scales as �z−1/2, and csin scales as �z1/4,
which would have a priori suggested a dramatic change in
the shape of the wave crests on approaching z=0, at least
from a linear point of view. This means that the pattern ve-
locity, and also presumably the frequency and the wave-
length, are global properties of the pattern resulting from a

nonlinear selection process. We discuss implications of this
point in the Conclusion.

C. Measurements of checkerboard properties: Frequency and
wavelength

If one now still keeps in mind the simple idea that the
pattern properties are selected at the transonic line, one

FIG. 6. �a� Velocity of the traveling waves VH plotted versus
flow rate � for different viscosities and cylinder diameters. The
superimposed dashed curve is the typical velocity � / ����, calcu-
lated with ��20.3 dyn/cm and ��0.95 g/cm3 �see text�. �b�, �c�
Same plots for the pattern frequency f versus � and for the wave-
length versus 1/�2. The lines are linear fits crossing the origin.

FIG. 5. �a� A curtain with the checkerboard structure, viewed
from below, at 45° from the vertical �B direction in Fig. 2�. Right
inset: a similar view of the curtain without the waves. �b� Spa-
tiotemporal diagram of the two patterns of waves.

PROPAGATING WAVE PATTERN ON A FALLING¼ PHYSICAL REVIEW E 74, 026305 �2006�

026305-5



should expect a pattern wavelength scaling as ��z*

=2� / �g�2�2� and a frequency given by f =VH /���g� /�.
Both quantities are plotted in Figs. 6�b� and 6�c�. As ex-
pected f seems to be proportional to �, while � scales as
1 /�2 �at least for the smaller viscosity�, but both quantities
involve prefactors that depend on d and �. Roughly, f de-
creases with both increasing liquid viscosity � and increasing
tube radius d, while the dependence is the opposite for �.
This is in contrast with the wave velocity VH, which did not
depend on these two quantities, or was at least weakly de-
pendent.

Despite several attempts, we were unable to find a simple
scaling for both f and � combining both the liquid viscosity
and the tube diameter. It is particularly important to note that
the data obtained for V30 and V50 oils are very close despite
a ratio of viscosities equal to 5/3. On the other hand,
complementary measurements �not reported here� convinced
us that the frequency was inversely proportional to the tube
diameter for centimetric tubes. Though only two tube diam-
eters are here available, this can be made visible by plotting
the velocity fd versus �, the obtained graph being repro-
duced in Fig. 7. As one can judge from these pictures, all the
data collapse on at most two branches, each of these being
possibly associated with respectively, low and high viscosi-
ties, but this point remains to be investigated in more detail.
For the moment, we do not know the physical origin of the
dependence on d. A possible idea here is that the typical
transverse velocity of the curtain, which scales as fd, could
be driven by the velocity of the liquid flowing below the
tube, in a domain where the film thickness is not governed
by the lubrication approximation but rather saturates to a
constant value �capillary length, for instance�.

Finally, these plots also contain information on the range
of existence of the wave pattern, which depends on both �
and d: for a given �, the use of a larger cylinder diameter d
shifts the range of existence to higher flow rates. If d is fixed
and � is varied, the range of existence seems to be shifted to
higher � at higher � �although it is less obvious than the
influence of d�. For the V50 oil, the range is reduced: this is
due to the fact that, when the flow rate is decreased below a
critical value, the curtain can separate into two parallel thin-

ner curtains, localized symmetrically to each other from the
median plane �yOz�, as shown in Fig. 8. Consequently, it is
not possible to observe the wave pattern with the largest
diameter used in this experiment �d=6.8 cm� and the V50
oil. For high viscosities, the curtain existence range is re-
duced because of such a separation: considering the pendu-
lum motion of the curtain, this situation occurs when the
allowed spatial range for the curtain detachment is too large.

IV. DISCUSSION AND CONCLUSIONS

This study reports a further curtain instability leading to a
pattern of propagative waves. This pattern involves pendu-
lumlike oscillations of the top of the curtain. These oscilla-
tions are enabled by the use of a smooth overhang which
provides unconstrained boundary conditions. Thus, one can
determine that conditions for this instability are twofold.
First, the subsonic area has to be large enough to enable the
growth of perturbations generated in the vicinity of the tran-
sonic point. Second, the inlet should allow for the perturba-
tions to be reflected on top, which is enabled by the free-
constrained conditions in the transverse direction. This
pattern is observed when the flow rate is progressively de-
creased below a threshold �not studied in detail here�, while
remaining above curtain rupture. This is reminiscent of re-
cent observations of oscillating annular liquid sheets �liquid
bells� formed below an overflowing dish or a porous ring
�34,35�.

Even if the hydrodynamic mechanisms for velocity and
frequency selections still need to be more clearly understood,
the measurements reported here provide several clues.

�1� The wave velocity is related to the properties of the
transonic line �z=z*�: its absolute value is half the liquid
speed at z* �which also equals half the sinuous wave speed at
z*�, and does not depend on the vertical location on the cur-
tain. This fact puts into evidence that the selection mecha-
nism involves properties of the transonic line, which is also
the physical boundary where sinuous waves turn from con-
vectively to absolutely unstable. The wave speed of the pat-
tern does not depend on � or d either, or is at most weakly
dependent.

�2� The frequency measurements exhibit a linear depen-
dence on flow rate. The frequency also depends on � and d,
and presumably on other parameters like the surface tension
and the density of the liquid. All these parameters should
influence the complex shape of the free surface just below
the overhang, which may be involved in the wavelength and
the frequency selection.

Furthermore, some points of our study can be related to
the still disputed problems of curtain stability and that of the
physical mechanisms leading to the breakup. In particular,
our observations show that sinuous waves, which are some-
times invoked to explain curtain breakup �27,29,30,39�, can
be withstood at relatively high amplitudes without breakup.
This fact underlines the discrepancy between linear theories
that predict the curtain breakup by wave amplification
�27,29,39�, and experimental situations where an entirely
subsonic curtain can be observed without breakup
�28,36,40�. This point has been theoretically reconsidered in

FIG. 7. Typical transverse curtain velocity fd versus �.
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a recent paper �33�, which suggests that even when sinuous
waves lead to the appearance of a global unstable mode in
the whole curtain, rupture could be delayed because they
involve the thinning of the sheet at molecular thickness. We
suggest that the checkerboard structure could be the outward
sign of a global mode, if one considers its spatial homoge-
neity and its strong selection mechanism. In the framework
of convective or absolute instabilities of weakly nonparallel
flows, it is predicted �38� that a global mode may appear
when the length of the area of absolute instability �in the
curtain, the area We�1� is larger than a certain threshold.
The decrease of flow rate indeed leads to the extension of the
area where We�1, and this could explain why the pattern is
only observed below a certain flow-rate threshold.

This study finally illustrates the influence of the modifi-
cation of the upper boundary conditions on the dynamics and

stability of liquid curtains. In some sense, the configuration
of the present study is perhaps more “natural” to capture
intrinsic properties of the curtain than the usual configuration
using an injection slot, which adds a constraint at the top of
the curtain. Qualitatively, we have also begun to investigate
the influence of the bottom boundary of the curtain. Surpris-
ingly, one can maintain curtains at very low flow rates by
adding a thin cylinder �of typical radius less than 0.5 cm� at
the bottom of the curtain �36�. Such a situation is suggested
in Fig. 9, where appearance of a black film and of rainbow
patterns bear witness that the local thickness can be of order
of the light wavelength without breaking. Local perturba-
tions on such thin curtains �caused by a soaked obstacle, for
example� do not necessary lead to breakup �41�. This surpris-
ing effect is presently under study.
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